
697

0022-4715/01/0600-0697$19.50/0 © 2001 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 103, Nos. 5/6, 2001

The Phase Diagram of a Spin Glass Model

J. R. Wedagedera1 and T. C. Dorlas2

1 Department of Mathematics, University of Ruhuna, Matara, Sri Lanka. e-mail: janak@

maths.ruh.ac.lk
2 Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Road,

Dublin 4, Ireland. e-mail: dorlas@stp.dias.ie

Received October 6, 1998; revised December 14, 2000

A spin glass problem on a Cayley tree with ferromagnetic interactions is solved

rigorously. Using a level-I large deviation argument together with the martin-

gale approach used by Buffet, Patrick and Pulé, (1) explicit expressions for the

free energy are derived in different regions of the phase diagram. It is found that

there are four phases: a paramagnetic phase, a spin-glass phase, a ferromagnetic

phase and a mixed phase. The nature of the phase diagram depends on the

power with which the ferromagnetic term occurs in the Hamiltonian.
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1. THE DIRECTED POLYMER PROBLEM AND THE GENERALIZED

RANDOM ENERGY MODEL

The problem of a spin glass on a Cayley tree (or equivalently, a directed

polymer) is one of a handful of models in disordered systems that can be

solved exactly. It is a simplification of the more realistic case where one

considers a regular lattice in place of the Cayley tree. The problem has

been treated for instance using the replica method, (5) using the properties

of Generalized Random Energy Model (4, 2) by reducing the problem to a

reaction-diffusion system (8) and by a martingale approach. (1) The latter



approach is particularly elegant and achieves a completely rigorous and

transparent solution to the problem. Here we use a combination of the

martingale approach of ref. 1 and a level-1 large deviations argument (10, 11, 15)

to solve a spin glass model on a Cayley tree with an additional mean-field

ferromagnetic interaction term in the Hamiltonian. We consider a one-

parameter family of such models distinguished by the power p \ 2 to which

this term is raised and show that the phase diagram in the case p > 2 is

qualitatively different from that in the case p=2. The two phase diagrams

are depicted in Fig. 2(a and b). We derive completely rigorously a varia-

tional expression for the free energy of our model and then analyze care-

fully the various regions of the phase diagram. We note that the free energy

of the Generalized Random Energy Model in a magnetic field has been

computed by Derrida and Gardner (6) using the replica method, which is of

course, not rigorous. Our result (Section 2) has a direct analogy with theirs

(Section 4 in ref. 6) in this case.

The spin glass on a Cayley tree is in fact similar to Derrida’s

Generalized Random Energy Model, which has been used in various

applications, notably information theory (13, 14) and neural networks. (6, 7) It

follows that our results may have implications for applications in these

areas. In particular, we have outlined the implications of our results for the

optimal decoding problem as proposed by Sourlas (13, 14) in a separate

paper. (9) Indeed, it turns out that the phase diagram is identical to that of

the Random Energy Model with the same ferromagnetic interaction term

as above. We claim that this model is relevant for Sourlas’ decoding theory

in the case of large p. Indeed, in refs. 3 and 4 Derrida already showed that

the random energy model is the limit of the Sherrington–Kirkpatrick model

with p-spin interaction. As explained in ref. 9, Sourlas’ coding scheme

amounts to adding a p-spin Ising term, the ground state of which corres-

ponds to the original message. Random noise in the transmission line then

leads to a Random Energy Model with p-spin interaction in the limit

pQ..

Let us now define the model and the terminology we adopt in this

paper: Consider a Cayley tree (cf. Fig. 1) with co-ordination number 3—i.e.,

each node of the tree is connected to another two at the next level. Label

the bonds of the tree by (j, k) where j, k ¥ N and j corresponds to the

generation and k ¥ {1, ..., 2 j} labels the bonds from left to right within the

jth generation. To each bond of the tree attach i.i.d random variables Vj, k
with distribution depending on a parameter c.

A path of length n starting at the top of the tree is defined as a finite

sequence

{(j, kj); 1 [ j [ n} (1.1)
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Fig. 1. kj+1=2kj−(1−sj+1)/2. ki=1, 2, ... and si take ±1.

satisfying the relation

kj+1=2kj−
1
2 (1−sj+1) (1.2)

where sj ¥ {−1, 1} correspond to taking the left or right branch out of

generation j. (see Fig. 1). Denote by (s) j the sequence of Ising spins {sk}
j
k=1.

Then the path is completely determined by (s)n. Define the Hamiltonian by

−H=C
n

j=1
Vj, (s)j+

l

np−1 :C
n

j=1
sj :

p

(1.3)

where p \ 2 is an arbitrary parameter and l> 0 is a coupling constant.

The partition function is defined by

Zn= C
{sj}

n
j=1

e−bH (1.4)

The (specific) free energy of the model is defined by

−bf(b, l, c)=lim
nQ.

1
n

log Zn(b) (1.5)

In Section 4 we show that this limit exists almost surely with respect to the

random variables V and we derive expressions for it in the cases p=2 and

p > 2 respectively. The phase diagram consists of four different phases: the

paramagnetic phase (P), a spin-glass phase (SG), a ferromagnetic phase (F)

and a mixed phase (M). The phase diagram in the case p=2 is depicted in
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Fig. 2(a); and that in the case p > 2 in Fig. 2(b). With reference to

Fig. 2(a), in paramagnetic regime (P), where l< C1(b) and b< b0, and

also in region (SG) where b> b0, l< l0, the magnetization m=0. In the

latter phase the free-energy remains constant and in the absence of long-

range order this is a spin glass or frozen phase. The region (F) where

C1(b) < l< C2(b) and m ] 0 is the ferromagnetic phase. (M) is a mixed

phase where l> C2(b) or l> l0 and the magnetization m ] 0 depends

only on l.

In Fig. 2(b), the effect of the higher order ferromagnetic term in (1.3)

is visible from the curve C in contrast to the case p=2. Indeed, it will be

shown that as p increases the points A and D in Fig. 2(b) drift apart. We

will also show that for p > 2 the magnetization is discontinuous across the

Fig. 2. (a) The phase-diagram for p=2; (b) the phase-diagram for p > 2.

700 Wedagedera and Dorlas



lines C1, C and l=lc whereas it is continuous across the curve C2A. In the

paramagnetic region (P), m=0 but the free-energy depends on b and in the

ferromagnetic region (F) m(b, l) ] 0 while in the Spin Glass phase (SG)

m=0 with the free-energy remaining constant. In the mixed phase (M),

m ] 0 and the free-energy depends only on l.

The computation of the free energy involves large deviation theory.

First we write the partition function as an integral with respect to measures

defined in terms of the spin-glass on a Cayley tree with an external magne-

tic field. Then we show that these a priori measures satisfy the large devia-

tion principle (LDP) by first calculating the cumulant generating function.

This is done in Section 2, using an extension of the martingale approach of

ref. 1. It is well-known that the existence of the cumulant generating func-

tion implies the LDP for level-I measures (see refs. 15 and 11). We compute

the corresponding rate function as a Legendre transform of this cumulant

generating function in Section 3. By Varadhan’s theorem we can then write

a variational expression for the free energy density. This expression is

analyzed in Section 4 for the cases p=2 and p > 2 respectively. Exact

expressions for the free energy in the various regions of phase diagram are

derived.

2. THE CUMULANT GENERATING FUNCTION

2.1. Definitions

Let the configuration space be the set Xn of all sequences {si}
n
i=1 with

si ¥ X={−1, 1}. Let m(si=+1)=m(si=−1)=1/2 so that the a-priori

probability of each configuration of spin variables is mn=1/2n. Now the

partition function (1.4) can be written as

Zn= C
{sj}

n
j=1

exp 3bn 5
1
n
C
n

j=1
Vj, (s)j+l 1

1
n
C
n

j=1
sj2

p

64 (2.1)

Note that since Vj, (s)j depends on all the previous sk, k [ j, performing the

above summation over {sj} is not straight-forward. So, we will exploit

martingale properties (17) related to Zn.

We write the free energy (1.5) as

−bf(b, l, c)=lim
nQ.

1
n
log F

Xn
e−bHmn(ds)+log 2 (2.2)
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Also define the observables Vn: XnQR, mn: XnQR by

Vn(s)=
1
n
C
n

j=1
Vj, (s)j, mn(s)=

1
n
C
n

j=1
sj (2.3)

Notice that the partition function (2.1) only depends on these two variables

so that (2.2) can be rewritten as an integral with respect to the distribution

Nn of Wn=(Vn(s), mn(s)), i.e., the image measure (12) on R2 induced by the

mapWn:

−bf(b, l, c)=lim
nQ.

1
n
log F

R
2
enb(v+lm

p)Nn(dv, dm)+log 2 (2.4)

We wish to compute this limit and show that it converges almost surely

with respect to the distribution of the random variables Vj, (s)j, which we

also denote by w. We do this by first computing the cumulant generating
function C(t1, t2) defined by

C(t1, t2)=lim
nQ.

1
n
log F e t1v+t2mNn(dv, dm) (2.5)

This will enable us to compute the corresponding rate function, i.e.,

I(v, m)=sup
t1, t2

{t1v+t2m−C(t1, t2)} (2.6)

and to apply Varadhan’s Theorem (11, 15) to get

−bf(b, l, c)=sup
v, m

{b(v+lmp)−I(v, m)}+log 2 (2.7)

Denote

Z̃n(t1, t2)= C
{sj}

n
j=1

e t1 ;
n
j=1 Vj, (s)j+t2 ;

n
j=1 sj (2.8)

and define

nn={Vj, (s)j; 1 [ k [ 2 j, 1 [ j [ n} (2.9)
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which denotes the set of all the random variables Vj, (s)j between generation

1 and n. Notice that the cumulant generating function (2.5) can be written as

C(t1, t2)=lim
nQ.

1
n
log Z̃n(t1, t2)−log 2 (2.10)

Define

F(t1, t2)=cosh(t2) E[e t1V] (2.11)

and Mn(t1, t2)=
Z̃n(t1, t2)
(2F(t1, t2))n

(2.12)

where E denotes the expectation with respect to the random variables V.

2.2. Martingale Results

Proposition 2.1. {Mn}
.

n=1 is a martingale with respect to the

increasing family of random variables {nn}.n=1, that is,

E(Mn+1 | nn)=Mn (2.13)

Proof. Write

Vn+1, (s1, ..., sn, sn+1)=3
V1; sn+1=+1

V2; sn+1=−1

Z̃n+1(t1, t2)= C
{sj}

n
j=1

exp 5t1C
n

j=1
Vj, (s)j+t2 C

n

j=1
sj6

× C
sn+1 ¥ {−1, 1}

exp[t1Vn+1, (s)n+1+t2sn+1] (2.14)

Taking the expectation with respect to Vn+1, s,

E[Z̃n+1(t1, t2) | nn]=Z̃n(t1, t2) E[e t1V1+t2+e t1V2−t2]

=Z̃n(t1, t2) 2 cosh(t2) E(e t1V) (2.15)

Dividing by (2F(t1, t2))n+1 the result follows. L
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Remark 2.1. 1. E[Mn(t1, t2)]=1.
2. As in ref. 1, ifM. > 0 with probability 1 then we have

lim
nQ.

1
n
log Z̃n(t1, t2)=log 2F(t1, t2) a.s. (2.16)

Lemma 2.1. For any fixed t1, t2,

P[M.(t1, t2)=0]=0 or 1 (2.17)

Proof. Let Ln (resp. Rn) denote the set of paths of length n which

start with a branch in the left (resp. right) direction. Then we have

Mn(t1, t2)=(2F(t1, t2))−n 5e
t1V11+t2s1 C

(s) j ¥ Ln

e t1 ;
n
j=1 Vj, (s)j+t2 ;

n
j=1 sj

+e t1V12+t2s2 C
(s) j ¥ Rn

e t1 ;
n
j=1 Vj, (s)j+t2 ;

n
j=1 sj

6 (2.18)

The event {limnQ. Mn(t1, t2)=0} is independent of V11 and V12. Hence it is

independent of n2. Similarly it is independent of np for every p. Hence the

result follows by Kolmogorov’s 0,1-Law. L

Remark 2.2. If P[M.=0]=1 then E[M.]=0. Therefore, if we

know that E[M.(t1, t2)] > 0 then P[M.(t1, t2)=0]=1 is impossible. As

in ref. 1, we prove that

sup
n \ 1

E[Ma
n(t1, t2)] <. for some a> 1 (2.19)

from which it follows that E[M.(t1, t2)]=1.

The proof of the next lemma takes a similar reasoning as that of ref. 1.

We refer to ref. 16 for the proof.

Lemma 2.2.

E[M2
n+1(t1, t2) | n

n]=M2
n(t1, t2)+l(t1, t2)

n [l(t1, t2)−l(0, t2)] Mn(2t1, 2t2)
(2.20)

where

l(t1, t2)=
F(2t1, 2t2)
2F2(t1, t2)

(2.21)
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Remark 2.3. Taking expectations on both sides

E(M2
n+1)=E(M2

n)+l(t1, t2)
n [l(t1, t2)−l(0, t2)] (2.22)

and iterating we find

E(M2
n)=l(t1, t2)+

1
2 sech

2 (t2)+[l(t1, t2)−l(0, t2)] C
n−1

k=1
l(t1, t2)k (2.23)

Hence we conclude that

sup
n \ 1

E[M2
n(t1, t2)] <. whenever F(2t1, 2t2) < 2F2(t1, t2) (2.24)

The following lemma was proven in ref. 1:

Lemma 2.3. For any finite set of real numbers {x1, ..., xn}, the

function

g(y)=
1
y
log C

n

j=1
eyxj (2.25)

is decreasing and convex in y.

Proposition 2.2. Define

F(t1, t2)=log[2F(t1, t2)] (2.26)

If for any given t1, t2, there exists a> 1 such that

F(at1, at2) < aF(t1, t2) (2.27)

then

sup
n \ 1

E[Ma
n(t1, t2)] <. (2.28)

Proof. Take 1 < a< 2. By Hölder’s inequality

E[Ma
n+1 | n

n] [ (E[M2
n+1 | n

n])a/2

[Ma
n+[l(t1, t2)−l(0, t2)]

a/2 l(t1, t2)na/2M
a/2
n (2t1, 2t2) (2.29)
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By Lemma 2.3 we have Z̃1/2
n (2t1, 2t2) [ Z̃1/a

n (at2, at1) for 0 < a< 2. Hence

M1/2
n (2t1, 2t2)=

Z̃1/2
n (2t1, 2t2)

(2F(2t21, 2t2))n/2

[M1/a
n (at1, at2) 5

2F(at1, at2)
(2F(2t1, 2t2))a/2 6

n/a

(2.30)

Inserting this in (2.29) we get

E[Ma
n+1 | n

n] [Ma
n(t1, t2)+[l(t1, t2)−l(0, t2)]

a/2 l(t1, t2)na/2

×Mn(at1, at2) 5
2F(at1, at2)
(2F(t1, t2))a 6

n

(2.31)

Taking expectations, iterating as in (2.23) and substituting for l(t1, t2) we

find

E[Ma
n+1] [ E[Ma

1]+[l(t1, t2)−l(0, t2)]
a/2 C

n

k=1 5
2F(at1, at2)
(2F(t1, t2))a 6

k

(2.32)

This proves the proposition. L

Remark 2.4. 1. It follows from Hölder’s inequality that F(t1, t2) is a

convex function. So, (2.27) implies that

d
da
1
a
F(at1, at2)|a=1=lim

aQ1

(F(at1, at2)/a)−F(t1, t2)
a−1

< 0 (2.33)

On the other hand if (2.33) holds, that is if

d
da
1
a
F(at1, at2)|a=1=−F(t1, t2)+

d
da
F(at1, at2)|a=1 < 0 (2.34)

then there exists a> 1 such that (2.27) holds.

2. In the following we assume that V has a Gaussian distribution with

zero mean and variance 1/c. In that case

F(t1, t2)=log[2 cosh(t2)]+
t21
2c

(2.35)
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Fig. 3. In the region |t1 | < B(t2), there is a> 1 such that n \ 1E[Ma
n(t1, t2)] <..

and (2.34) reduces to

|t1 | < {2c[log(2 cosh(t2))−t2 tanh(t2)]}1/2=:B(t2) (2.36)

Also define b0:=B(0). We shall use these definitions throughout the paper

hereafter. For future use we write B−1=T. It will be convenient to keep the

graph of B(t2) in mind as as proceed with proofs of future results (see

Fig. 3).

2.3. Existence of the Cumulant Generating Function

Theorem 2.1. Assume that V takes a Gaussian distribution with

zero mean and variance 1/c and define

C={(t1, t2) ¥ R2 : |t2 | < T(t1)}

Then the following limit holds almost surely:

lim
nQ.

1
n
log Z̃n(t1, t2)=3

F(t1, t2); (t1, t2) ¥ C

t1F(t̄1, t̄2)/t̄1; (t1, t2) ¥ CC
(2.37)
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where t̄1, t̄2 are the solutions of the equations

t̄2
t̄1
=
t2
t1

and t̄1=B(t̄2) (2.38)

Proof. (i) (t1, t2) ¥ C: Now proposition (2.2) applies and we have

E[M.]=1 (see Remark 2.2). Hence using lemma (2.1), the result follows

by (2.16). We restate this: Define

W(t1, t2)=3w ¥ W : lim
nQ.

1
n
logZ̃n(t1, t2)=F(t1, t2)4 (2.39)

Then

P[W(t1, t2)]=1 for each (t1, t2) ¥ C (2.40)

But we need a stronger result, namely

P 5 3
(t1, t2) ¥ C

W(t1, t2)6=1 (2.41)

that is, the exceptional nullset is uniform in (t1, t2). The proof of this is

given in ref. 16.

(ii) (t1, t2) ¥ CC: Take any (t1, t2) ¥ CC (cf. Fig. 4). Let (t̄1, t̄2) be the

solution of (2.38) which is obviously unique. Put y=t1 /t̄1=t2 /t̄2 \ 1. By

Lemma 2.3, log Z̃n(yt1, yt2)/y is decreasing and convex in y. By the decrease

lim sup
nQ.

1
ny

log Z̃n(yt̄1, yt̄2) [ lim sup
nQ.

1
n(1−e)

log Z̃n((1−e) t̄1, (1−e) t̄2))

(2.42)

Since (1−e)(t̄1, t̄2) ¥ C we get by letting eQ0

lim sup
nQ.

1
ny

log Z̃n(yt̄1, yt̄2) [ F(t̄1, t̄2) (2.43)

On the other hand, by the convexity we find

lim inf
nQ.

1
ny

log Z̃n(yt̄1, yt̄2) \ lim inf
nQ.

1
n(1−e)

log Z̃n((1−e) t̄1, (1−e) t̄2)

+lim inf
nQ.

d
dy 5

1
ny

log Z̃n(yt̄1, yt̄2)6y=1−e (y−1+e)
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Since the sequence of convex functions

1
ny

log Z̃n(yt1, yt2)

converges to F(yt1, yt2)/y a.s. for y(t1, t2) ¥ C (by the proof in part (i) of the

theorem), their derivatives converge to the limit

d
dy 5

1
y
F(yt1, yt2)6

Hence

lim inf
nQ.

1
n
d
dy 5

1
y
log Z̃n(yt̄1, yt̄2)6y=1−e=

d
dy 5

1
y
F(yt̄1, yt̄2)6y=1−e (2.44)

Fig. 4. t2(b)=kb and t̄2(b̄)=kb̄. The points (b̄, t̄2) lie on the boundary t2=T(b).
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Moreover since (2.34) is equivalent to (2.36),

d
dy 5

1
y
F(yt1, yt2)6y=1=0 at (t̄1, t̄2) (2.45)

It follows that

lim inf
nQ.

1
ny

log Z̃n(yt̄1, yt̄2) \ F(t̄1, t̄2) a.s. (2.46)

as eQ0. Hence we have

lim
nQ.

1
n
log Z̃n(yt̄1, yt̄2)=yF(t̄1, t̄2) a.s. L (2.47)

Corollary 2.1.1. There exists a uniform null set N such that the

cumulant generating function

C(t1, t2)(w)=3
F(t1, t2)−log 2; (t1, t2) ¥ C

t1F(t̄1, t̄2)/t̄1−log 2; (t1, t2) ¥ CC
(2.48)

is defined and exists for all (t1, t2) if w ¨N.

N.B: In the second case t̄1 and t̄2 has to be determined so that (2.38) is

satisfied.

3. VARIATIONAL FORMULA

3.1. The Rate Function

Lemma 3.1. Let

Ib(m):=sup
t
{tm−C(b, t)} (3.1)

Then the free-energy expression (2.7) can be written as

−bf(b, l)=log 2+sup
m
{lbmp−Ib(m)} (3.2)
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Fig. 5. C(t1, t2) at c=1 for given k=t2/t1. Notice it’s linear behaviour beyond the region C

along the radical lines.

Proof. Notice that the free-energy expression (2.7) can be written as

−log 2−bf(b, l)=sup
m
{blmp+sup

v
[bv−I(v, m)]} (3.3)

where the second supremum is the Legendre transform of I with respect to

the first variable. We can also write the rate function (2.6) as

I(v, m)=sup
t1
{t1v−(−I t1(m))} (3.4)

By convexity of −I t1(m) with respect to t1 (since C is convex) we can invert

(3.1) to get

−I t1(m)=sup
v
{t1v−I(v, m)} (3.5)

Inserting this in (3.3) yields the lemma. L

Remark 3.1. 1. Notice that F is symmetric in both variables (pro-

vided the distribution of V is symmetric). In particular

C(−t1, t2)=C(t1, t2)=C(t1, −t2)
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2. Since t1 should take the same sign as v in the following, we have,

I(v, m)=sup
t1 ¥ R

{t1v+I t1(m)}=sup
t1 > 0

{t1 |v|+I t1(m)}=sup
t1 ¥ R

{t1 |v|+I t1(m)}
(3.6)

and hence I(v, m)=I(|v|, m). Also, it follows by a similar reasoning

considering

−I t1(m)=sup
t2
{t2m−C(t1, t2)} (3.7)

that I(v, m)=I(v, −m) and hence we have

I(v, m)=I(|v|, |m|) (3.8)

Therefore it suffices to consider only t1=b> 0 and m> 0, in all the deri-

vations that follow. We find t1=b and therefore it is convenient to write t
instead of t2 hereafter.

Proposition 3.1. Let m(b)=tanh[T(b)], b̄(m)={2c log 2−I0(m)}1/2

and I0(m)=[(1+m) log(1+m)+(1−m) log(1−m)]/2. Then

Ib(m)=3
Ib1(m):=I0(m)−

b2

2c
; 0 [ |m| [ m(b)

Ib2(m):=−
bb̄

c
+log 2; m(b) < |m| < 1

.; otherwise

(3.9)

Fig. 6. The curve and the line show the boundary of the domain of validity of Ib(m).
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Proof. Notice that since Ib(m)=max{Ib1, I
b
2} one has to determine

which one of Ib1 and Ib2 dominates and when that happens. This is done by

solving the one-dimensional variational problem where one simply dif-

ferentiates the two forms of C(b, t) in the regions C and CC (cf. (2.48))

with respect to t. L

Remark 3.2. The boundary of the domain of validity of Ib1(m) is

shown in the Fig. 6 which is obtained by solving the explicit equation

B(t)=b for t and then taking m(b)=tanh(t).

4. FREE ENERGY AND THE PHASE DIAGRAM

We now discuss the phase diagram as depicted in Fig. 2(a) i.e., for the

case p=2. We define the graphs l=C1(b), l=C2(b) by

C1(b)=1/(2b)

C2(b)=
T(b)
2bm(b)

(4.1)

where m(b)=tanh[T(b)].
The proof of the following lemma is given in ref. 16:

Lemma 4.1. Ifl> l0andl> C2(b)theequationm=tanh[2b̄(m) lm]
has exactly one positive solution on [0, 1] which increases as l increases,

and if l [ l0 the only solution is m=0.

Theorem 4.1. Let p=2. Then the free energy is given by

f(b, l)=3
fP(b) —−

b

2c
−
1
b

log 2;

l [ C1(b), 0 < b< b0

fF(b, l) —−lm̄(b, l)2+
1
b
I0(m̄(b, l))−fP(b);

C1(b) [ l [ C2(b), 0 < b< b0

fM(l) —−lm
2
l−
b̄(ml)
c

;

l \ C2(b), b [ b0 or l \ l0, b> 0

fSG —−
b0

c
; l [ l0, b \ b0

(4.2)
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and the corresponding phase diagram is given by Fig. 2(a). Here

m̄(b, l)=tanh[2blm̄(b, l)] (4.3)

ml=tanh[2b̄(ml) lml] (4.4)

l0=C1(b0)=1/(2b0) and b̄(m)=`2c[log 2−I0(m)] .

Proof. Define gi(b, l; m)=blm2−Ibi (m), i=1, 2, where Ibi are the

two forms of Ib(m) as defined in (3.9). Clearly,

“g1/“m=0 Zm=tanh(2blm) (4.5)

and, using

b̄Œ(m)=−
c tanh−1 (m)
b̄(m)

(4.6)

“g2/“m=0 Zm=tanh(2b̄(m) lm) (4.7)

These are just (4.3) and (4.4) and it remains to determine which case

applies in various regions of the b, l-plane.
First suppose that 0 < b< b0. If l [ C1(b) then (4.3) has only the

zero solution and the maximizer is attained at m=0. If C1(b) [ l [ C2(b)
then the maximum is attained at the positive solution m=m̄(b, l) of (4.5),

that is (4.3) holds and Ib(m)=Ib1(m). Indeed, m̄(b, l) [ m(b) since

l [ C2(b) and m̄ increases with l.

If l \ C2(b) then g1(b, l; m) is increasing in m for m [ m(b) so that its

maximum is attained at m=m(b). At that point g1=g2 so that the

maximum is always attained for m \ m(b) and f(b, l)=g2(b, l; m).
By Lemma 4.1, Eq. (4.7) has a positive solution ml \ m(b) which

corresponds to the maximum. The free energy follows by insertion:

f(b, l)=−lm2
l+I

b
2(ml)−log 2=fM(l).

Next consider the case b> b0. Then Ib1(m) does not apply so that

f(b, l)=g2(b, l; m), where m is the maximizer. Clearly, if l [ l0 then m=0
by Lemma 4.1 and f(b, l)=b−1(Ib2(0)−log 2)=fSG whereas if l \ l0 the

maximizer is given by the unique positive solution of (4.4) and f(b, l) is

again given by fM(l). L

The phase diagram for the case p > 2 can be determined in the same

lines as for the case p=2, the details are given in ref. 16. We state the main

theorem:
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Theorem 4.2. Put gi(b, l; m)=blmp−Ibi (m); i=1, 2. Let m̄1(b, l)
be the unique positive solution of “g1/“m=0 such that g1(b, l; m) \
g1(b, l; 0) where 0 [ m̄1(b, l) [ m(b); m̄2(l) be that of “g2/“m=0 such that

g2(b, l; m) \ g2(b, l; 0) where m̄2(l) \ m(b) for 0 [ b [ m(b) and m̄(l) be

that of “g2/“m=0 such that g2(b, l; m) \ g1(b, l; 0) where m̄(l) \ m(b1)
for b> b1=b̄(m̄(b, l)).

Let mp be the critical value of m̄1(b, l) given by g1(b, l; m)=g1(b, l; 0).
Moreover, let the curves C1(b) and C2(b) be defined by

C1(b)=
tanh−1 (mp)
pbmp−1

p

and C2(b)=
tanh−1 (m(b))
pb(m(b))p−1

(4.8)

respectively. Then, for 0 < b [ b1,

−bf(b, l)−log 2=3
−Ib1(0)=

b2

2c
if l [ C1(b)

blm̄1(b, l)−I
b
1(m̄1(b, l)) if C1(b) [ l [ C2(b)

blm̄2(l)−I
b
2(m̄2(l)) if l> C2(b)

(4.9)

The magnetization jumps from 0 to mp across C1(b) but is continuous

across C2(b).
For b \ b0,

−bf(b, l)−log 2=3
−Ib2(0)=

bb0

c
−log 2 if l [ lc

blm̄(l)p−Ib2(m̄(l)) if l \ lc

(4.10)

The magnetization jumps from 0 to mc at l=lc.
For b1 [ b [ b0 there is a curve C(b) given by

l=C(b)Z−Ib1(0)=blm̄2(l)p−I
b
2(m̄2(l)) (4.11)

such that C(b1)=C2(b1)=l1, C(b0)=lc, CŒ(b1)=CŒ1(b1) and CŒ(b0)=0.
The free energy in this case is given by

−bf(b, l)−log 2=3
−Ib1(0)=

b2

2c
if l [ C(b)

blm̄(l)p−Ib2(m̄(l)) if l \ C(b)

(4.12)
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